Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659832

RESUMEN

Background: Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods: rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results: rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion: African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.

2.
Influenza Other Respir Viruses ; 17(8): e13170, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37621920

RESUMEN

The WHO Unity Studies initiative engaged low- and middle-income countries in the implementation of standardised SARS-CoV-2 sero-epidemiological investigation protocols and timely sharing of comparable results for evidence-based action. To gain a deeper understanding of the methodological challenges faced when conducting seroprevalence studies in the African region, we conducted unstructured interviews with key study teams in five countries. We discuss the challenges identified: participant recruitment and retention, sampling, sample and data management, data analysis and presentation. Potential solutions to aid future implementation include preparedness actions such as the development of new tools, robust planning and practice.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Estudios Seroepidemiológicos , África/epidemiología
3.
Parasite Epidemiol Control ; 20: e00283, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36704118

RESUMEN

Despite a significant reduction in the burden of malaria in children under five years-old, the efficient implementation of seasonal malaria chemoprevention (SMC) at large scale remains a major concern in areas with long malaria transmission. Low coverage rate in the unattainable areas during the rainy season, a shift in the risk of malaria to older children and the rebound in malaria incidence after stopping drug administration are mainly reported in these areas. These gaps represent a major challenge in the efficient implementation of SMC measures. An open randomized study was conducted to assess the effect of a fifth additional round to current regime of SMC in older children living in Dangassa, a rural malaria endemic area. Poisson regression Model was used to estimate the reduction in malaria incidence in the intervention group compared to the control group including age groups (5-9 and 10-14 years) and the use of long-lasting insecticidal nets (LLINs; Yes or No) with a threshold at 5%. Overall, a downward trend in participation rate was observed from August (94.3%) to November (87.2%). In November (round 4), the risk of malaria incidence was similar in both groups (IRR = 0.66, 95%CI [0.35-1.22]). In December (round 5), a decrease of 51% in malaria incidence was observed in intervention group compared to control group adjusted for age groups and the use of LLINs (IRR = 0.49, 95%CI [0.26-0.94]), of which 17% of reduction is attributable to the 5th round in the intervention group. An additional fifth round of SMC resulted in a significant reduction of malaria incidence in the intervention group. The number of SMC rounds could be adapted to the local condition of malaria transmission.

4.
Front Immunol ; 13: 879946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693806

RESUMEN

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , Humanos , Ratones , Péptidos , Glicoproteína de la Espiga del Coronavirus
5.
Front Immunol ; 13: 856033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585976

RESUMEN

Despite the global interest and the unprecedented number of scientific studies triggered by the COVID-19 pandemic, few data are available from developing and low-income countries. In these regions, communities live under the threat of various transmissible diseases aside from COVID-19, including malaria. This study aims to determine the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein, the receptor-binding domain (RBD), and the receptor-binding motif (RBM436-507). Study participants were categorized by age, gender, treatment duration for COVID-19, and comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19, malaria-positive patients against the three antigens was assessed. Recognition of the SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD, and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be age-dependent, responses to RBM were not. Responses were not gender-dependent for any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast, higher body weights negatively influenced the anti-S antibody response, and asthma and diabetes weakened the anti-RBM antibody responses. Although lower, a significant cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium falciparum infection, warranting further study.


Asunto(s)
COVID-19 , Malaria , Anticuerpos Antivirales , Humanos , Malaria/epidemiología , Malí , Pandemias , SARS-CoV-2
6.
Artículo en Inglés | MEDLINE | ID: mdl-37206892

RESUMEN

Excessive consumption of red and processed meat has been associated with a higher risk of developing colorectal cancer. There are many attempts to explain the risk of colorectal cancer associated with the consumption of red and processed meat: The temperature cooking of meat such as grilling and smoking contribute to the formation of mutagenic compounds including heterocyclic amines and polycyclic aromatic hydrocarbons.Heme iron in red meat is involved in the formation of N-nitroso compounds and lipid peroxidation products in the digestive tract.Fatty red meat is involved in the production of secondary bile acids by the bacteria of the gut microbiota. Many of the products formed are genotoxic and can cause DNA damage and initiate carcinogenesis of colorectal cancer. Various mechanisms contributing to their genotoxic role have been established in human and animal studies. In addition, there is increasing evidence that compounds formed from red and processed meat interact with the gut microbiota in colorectal cancer pathways. Although several early studies in animals and humans suggest a direct causal role of the gut microbiota in the development of colorectal cancer, the links between diet, gut microbiota, and colonic carcinogenesis are largely associations rather than proven causal relationships. Various biological mechanisms, including inflammation and oxidative stress can lead to DNA damage, gut dysbiosis, and therefore increase the risk of colorectal cancer. Dysbiosis of the gut microbiota may increase the risk of colorectal cancer through dietary component promotion of colonic carcinogenesis. In this paper, we review and update current knowledge about the relationships between red meat consumption, gut microbiota, and colorectal cancer.

7.
Nat Commun ; 12(1): 3006, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021143

RESUMEN

Coronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Neumonía/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Basófilos/inmunología , COVID-19/virología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Neutrófilos/inmunología , SARS-CoV-2/fisiología , Adulto Joven
8.
Front Immunol ; 12: 816509, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126373

RESUMEN

Fibrosis is a prominent feature of chronic allograft rejection, caused by an excessive production of matrix proteins, including collagen-1. Several cell types produce collagen-1, including mesenchymal fibroblasts and cells of hematopoietic origin. Here, we sought to determine whether tissue-resident donor-derived cells or allograft-infiltrating recipient-derived cells are responsible for allograft fibrosis, and whether hematopoietic cells contribute to collagen production. A fully MHC-mismatched mouse heterotopic heart transplantation model was used, with transient depletion of CD4+ T cells to prevent acute rejection. Collagen-1 was selectively knocked out in recipients or donors. In addition, collagen-1 was specifically deleted in hematopoietic cells. Tissue-resident macrophages were depleted using anti-CSF1R antibody. Allograft fibrosis and inflammation were quantified 20 days post-transplantation. Selective collagen-1 knock-out in recipients or donors showed that tissue-resident cells from donor hearts, but not infiltrating recipient-derived cells, are responsible for production of collagen-1 in allografts. Cell-type-specific knock-out experiments showed that hematopoietic tissue-resident cells in donor hearts substantially contributed to graft fibrosis. Tissue resident macrophages, however, were not responsible for collagen-production, as their deletion worsened allograft fibrosis. Donor-derived cells including those of hematopoietic origin determine allograft fibrosis, making them attractive targets for organ preconditioning to improve long-term transplantation outcomes.


Asunto(s)
Colágeno Tipo I/biosíntesis , Rechazo de Injerto/etiología , Rechazo de Injerto/metabolismo , Trasplante de Corazón/efectos adversos , Donantes de Tejidos , Animales , Biomarcadores , Enfermedad Crónica , Colágeno Tipo I/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Rechazo de Injerto/diagnóstico , Trasplante de Corazón/métodos , Inmunofenotipificación , Ratones , Ratones Transgénicos , Trasplante Homólogo
9.
Front Immunol ; 11: 574330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193361

RESUMEN

Over the last four decades, significant efforts have been invested to develop vaccines against malaria. Although most efforts are focused on the development of P. falciparum vaccines, the current availability of the parasite genomes, bioinformatics tools, and high throughput systems for both recombinant and synthetic antigen production have helped to accelerate vaccine development against the P. vivax parasite. We have previously in silico identified several P. falciparum and P. vivax proteins containing α-helical coiled-coil motifs that represent novel putative antigens for vaccine development since they are highly immunogenic and have been associated with protection in many in vitro functional assays. Here, we selected five pairs of P. falciparum and P. vivax orthologous peptides to assess their sero-reactivity using plasma samples collected in P. falciparum- endemic African countries. Pf-Pv cross-reactivity was also investigated. The pairs Pf27/Pv27, Pf43/Pv43, and Pf45/Pv45 resulted to be the most promising candidates for a cross-protective vaccine because they showed a high degree of recognition in direct and competition ELISA assays and cross-reactivity with their respective ortholog. The recognition of P. vivax peptides by plasma of P. falciparum infected individuals indicates the existence of a high degree of cross-reactivity between these two Plasmodium species. The design of longer polypeptides combining these epitopes will allow the assessment of their immunogenicity and protective efficacy in animal models.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , África/epidemiología , Secuencia de Aminoácidos , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Protección Cruzada , Reacciones Cruzadas , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Malaria/inmunología , Malaria/parasitología , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Péptidos/química , Péptidos/inmunología , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología
10.
Eur J Immunol ; 50(12): 2041-2054, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32640051

RESUMEN

The purpose of this study was to elucidate whether DC NK lectin group receptor-1 (DNGR-1)-dependent cross-presentation of dead-cell-associated antigens occurs after transplantation and contributes to CD8+ T cell responses, chronic allograft rejection (CAR), and fibrosis. BALB/c or C57BL/6 hearts were heterotopically transplanted into WT, Clec9a-/- , or Batf3-/- recipient C57BL/6 mice. Allografts were analyzed for cell infiltration, CD8+ T cell activation, fibrogenesis, and CAR using immunohistochemistry, Western blot, qRT2 -PCR, and flow cytometry. Allografts displayed infiltration by recipient DNGR-1+ DCs, signs of CAR, and fibrosis. Allografts in Clec9a-/- recipients showed reduced CAR (p < 0.0001), fibrosis (P = 0.0137), CD8+ cell infiltration (P < 0.0001), and effector cytokine levels compared to WT recipients. Batf3-deficiency greatly reduced DNGR-1+ DC-infiltration, CAR (P < 0.0001), and fibrosis (P = 0.0382). CD8 cells infiltrating allografts of cytochrome C treated recipients, showed reduced production of CD8 effector cytokines (P < 0.05). Further, alloreactive CD8+ T cell response in indirect pathway IFN-γ ELISPOT was reduced in Clec9a-/- recipient mice (P = 0.0283). Blockade of DNGR-1 by antibody, similar to genetic elimination of the receptor, reduced CAR (P = 0.0003), fibrosis (P = 0.0273), infiltration of CD8+ cells (p = 0.0006), and effector cytokine levels. DNGR-1-dependent alloantigen cross-presentation by DNGR-1+ DCs induces alloreactive CD8+ cells that induce CAR and fibrosis. Antibody against DNGR-1 can block this process and prevent CAR and fibrosis.


Asunto(s)
Aloinjertos/inmunología , Presentación de Antígeno/inmunología , Antígenos de Superficie/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Rechazo de Injerto/inmunología , Lectinas Tipo C/inmunología , Receptores Inmunológicos/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Femenino , Interferón gamma/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
11.
J Immunol ; 202(12): 3514-3523, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31068389

RESUMEN

Chronic rejection is a major problem in transplantation medicine, largely resistant to therapy, and poorly understood. We have shown previously that basophil-derived IL-4 contributes to fibrosis and vasculopathy in a model of heart transplantation with depletion of CD4+ T cells. However, it is unknown how basophils are activated in the allografts and whether they play a role when cyclosporin A (CsA) immunosuppression is applied. BALB/c donor hearts were heterotopically transplanted into fully MHC-mismatched C57BL/6 recipients and acute rejection was prevented by depletion of CD4+ T cells or treatment with CsA. We found that IL-3 is significantly upregulated in chronically rejecting allografts and is the major activator of basophils in allografts. Using IL-3-deficient mice and depletion of basophils, we show that IL-3 contributes to allograft fibrosis and organ failure in a basophil-dependent manner. Also, in the model of chronic rejection involving CsA, IL-3 and basophils substantially contribute to organ remodeling, despite the almost complete suppression of IL-4 by CsA. In this study, basophil-derived IL-6 that is resistant to suppression by CsA, was largely responsible for allograft fibrosis and limited transplant survival. Our data show that IL-3 induces allograft fibrosis and chronic rejection of heart transplants, and exerts its profibrotic effects by activation of infiltrating basophils. Blockade of IL-3 or basophil-derived cytokines may provide new strategies to prevent or delay the development of chronic allograft rejection.


Asunto(s)
Basófilos/inmunología , Rechazo de Injerto/inmunología , Trasplante de Corazón , Interleucina-3/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Interleucina-3/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante Homólogo , Regulación hacia Arriba
12.
Vaccine ; 34(13): 1566-1574, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26874325

RESUMEN

BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.


Asunto(s)
Adyuvantes Inmunológicos/química , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Mapeo Epitopo , Epítopos/inmunología , Femenino , Glucósidos/química , Humanos , Inmunoglobulina G/sangre , Lípido A/química , Ratones Endogámicos C3H , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Monocitos/parasitología , Plasmodium falciparum/inmunología , Receptores Toll-Like/agonistas , Vacunas Sintéticas/inmunología
13.
Malar J ; 13: 510, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25526742

RESUMEN

BACKGROUND: Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. METHODS: To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. RESULTS: Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. CONCLUSION: Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Mapeo Epitopo , Epítopos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Western Blotting , Niño , Preescolar , Secuencia Conservada/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Transplant Res ; 2(1): 16, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24143891

RESUMEN

BACKGROUND: Allograft fibrosis still remains a critical problem in transplantation, including heart transplantation. The IL-13/TGF-ß1 interaction has previously been identified as a key pathway orchestrating fibrosis in different inflammatory immune disorders. Here we investigate if this pathway is also responsible for allograft fibrosis and if interference with the IL-13/TGF-ß1 interaction prevents allograft fibrosis. METHODS: FVB or control DBA/1 donor hearts were transplanted heterotopically into DBA/1 recipient mice and hearts were explanted at day 60 and 100 post-transplantation. Cardiac tissue was examined by Masson's trichrome staining and immunohistochemistry for CD4, CD8, CD11b, IL-13, Fas ligand, matrix metalloproteinase (MMP)-1, MMP-13, ß2-microglobulin, and Gremlin-1. Graft-infiltrating cells were isolated and analyzed by flow cytometry. IL-13 and TGF-ß1 levels were determined by enzyme-linked immunosorbent assay (ELISA) and the amount of collagen was quantified using a Sircol assay; IL-13Rα2 expression was detected by Western blotting. In some experiments IL-13/ TGF-ß1 signaling was blocked with specific IL-13Rα2 siRNA. Additionally, a PCR array of RNA isolated from the allografts was performed to analyze expression of multiple genes involved in fibrosis. RESULTS: Both groups survived long-term (>100 days). The allogeneic grafts were infiltrated by significantly increased numbers of CD4+ (P <0.0001), CD8+ (P <0.0001), and CD11b+ cells (P = 0.0065) by day 100. Furthermore, elevated IL-13 levels (P = 0.0003) and numbers of infiltrating IL-13+ cells (P = 0.0037), together with an expression of IL-13Rα2, were detected only within allografts. The expression of IL-13 and IL-13Rα2 resulted in significantly increased TGF-ß1 levels (P <0.0001), higher numbers of CD11bhighGr1intermediateTGF-ß1+ cells, and elevated cardiac collagen deposition (P = 0.0094). The allograft fibrosis found in these experiments was accompanied by upregulation of multiple profibrotic genes, which was confirmed by immunohistochemical stainings of allograft tissue. Blockage of the IL-13/TGF-ß1 interaction by IL-13Rα2 siRNA led to lower numbers of CD11bhighGr1intermediateTGF-ß1+, CD4+, CD8+, and CD11b+ cells, and prevented collagen deposition (P = 0.0018) within these allografts. CONCLUSIONS: IL-13 signaling via IL-13Rα2 induces TGF-ß1 and causes allograft fibrosis in a murine model of chronic transplant rejection. Blockage of this IL-13/TGF-ß1 interaction by IL-13Rα2 siRNA prevents cardiac allograft fibrosis. Thus, IL-13Rα2 may be exploitable as a future target to reduce allograft fibrosis in organ transplantation.

15.
PLoS One ; 7(12): e51875, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272182

RESUMEN

One target of protective immunity against the Plasmodium liver stage in BALB/c mice is represented by the circumsporozoite protein (CSP), and mainly involves its recognition by IFN-γ producing specific CD8+T-cells. In a previous in vitro study we showed that primary hepatocytes from BALB/c mice process Plasmodium berghei (Pb) CSP (PbCSP) and present CSP-derived peptides to specific H-2k(d) restricted CD8+T-cells with subsequent killing of the presenting cells. We now extend these observations to an in vivo infection model in which infected hepatocytes and antigen specific T-cell clones are transferred into recipient mice inducing protection from sporozoite (SPZ) challenge. In addition, using a similar protocol, we suggest the capacity of hepatocytes in priming of naïve T-cells to provide protection, as further confirmed by induction of protection after depletion of cross-presenting dendritic cells (DCs) by cytochrome c (cyt c) treatment or using traversal deficient parasites. Our results clearly show that hepatocytes present Plasmodium CSP to specific-primed CD8+T-cells, and could also prime naïve T-cells, leading to protection from infection. These results could contribute to a better understanding of liver stage immune response and design of malaria vaccines.


Asunto(s)
Presentación de Antígeno , Antígenos de Protozoos/inmunología , Hepatocitos/inmunología , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Citocromos c/administración & dosificación , Citocinas/metabolismo , Epítopos de Linfocito T/inmunología , Hepatocitos/parasitología , Activación de Linfocitos/inmunología , Malaria/inmunología , Malaria/parasitología , Ratones , Bazo/inmunología , Bazo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...